Solution 10

Supplementary Problems

1. Consider the parametric surface

$$
\mathbf{r}(u, v)=(u+6 v,-2 u-12 v+5,-1), \quad(u, v) \in[0,1] \times[0,1]
$$

Is it a smooth surface? Describe its image. Recall that by definition a parametric surface is smooth if \mathbf{r} is continuously differentiable and $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is linearly independent in the interior of the region of definition.

Solution. $\mathbf{r}_{u} \times \mathbf{r}_{v}=(1,-2,0) \times(6,-12,0)=0$, hence this parametric surface is not smooth (or regular). In fact, the image of this parametric surface is $(u+6 v,-2 u-12 v+5,-1)=$ $(0,5,-1)+(u+6 v)(1,-2,0)$. As $u+6 v$ runs through all real numbers, the image is just the straight line $(0,5,-1)+t(1,-2,0), t \in \mathbb{R}$.
Note. This example shows how the regular condition $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|>0$ works.
2. Let S be the graph $\{(x, y, f(x, y)):(x, y) \in D\}$ where D is a plane region. Show that its surface area is given by

$$
\iint_{D} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A(x, y)
$$

Solution. S is parametrized by $\mathbf{r}(x, y)=(x, y, f(x, y))$. By a direct computation (done in class)

$$
\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\sqrt{1+f_{x}^{2}+f_{y}^{2}}
$$

Hence its surface area is given by

$$
\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A=\iint_{D} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A(x, y)
$$

3. Let S be the surface of revolution obtained by rotating $(\varphi(z), z), \varphi(z)>0, z \in[a, b]$ around the z-axis. Show that its surface area is given by

$$
2 \pi \int_{a}^{b} \varphi(z) \sqrt{1+\varphi^{\prime 2}(z)} d z
$$

Solution. The parametrization of S is given by $\mathbf{r}(\theta, z)=(\varphi(z) \cos \theta, \varphi(z) \sin \theta, z), \theta \in$ $[0,2 \pi], z \in[a, b]$. By a direct computation (done in class) $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\varphi(z) \sqrt{1+\varphi^{\prime 2}(z)}$. Hence, the surface area of S is given by

$$
\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A=\int_{0}^{2 \pi} \int_{a}^{b} \varphi(z) \sqrt{1+\varphi^{\prime}(z)} d z d \theta=2 \pi \int_{a}^{b} \varphi(z) \sqrt{1+\varphi^{\prime 2}(z)} d z
$$

